Радиус окружности, вписанной в равносторонний треугольник, равен 5. Найдите высоту этого треугольника.
По
свойству равностороннего треугольника:
Тогда:
6r=a√
a=6r/√
По второму свойству
равностороннего треугольника
высота так же является и
медианой.
Следовательно, она делит сторону, на которую опирается, пополам.
К тому же высота образует
прямоугольный треугольник, следовательно, можно воспользоваться
теоремой Пифагора:
a2=h2+(a/2)2
(10√
100*3=h2+(5√
300=h2+25*3
h2=300-75=225
h=√
Ответ: 15
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме ABCD точка E — середина стороны AB. Известно, что EC=ED. Докажите, что данный параллелограмм - прямоугольник.
Найдите угол ABC. Ответ дайте в градусах.
На отрезке AB выбрана точка C так, что AC=12 и BC=3. Построена окружность с центром A, проходящая через C. Найдите длину отрезка касательной, проведённой из точки B к этой окружности.
В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 208. Найдите стороны треугольника ABC.
Биссектрисы углов A и D параллелограмма ABCD пересекаются в точке, лежащей на стороне BC. Найдите AB, если BC=40.
Комментарии: