Постройте график функции
Определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
Отметим Область допустимых Значений (ОДЗ).
На ноль делить нельзя, следовательно:
6x2+7x≠0
x(6x+7)≠0
x1≠0
6x+7≠0
6x≠-7
x2≠-7/6
Т.е. x не может равняться 0 и -7/6.
Теперь упростим нашу функцию:
Получили простую гиперболическую функцию, значит график - гипербола.
Построим график по точкам:
X | -3 | -2 | -1 | 1 | 2 | 3 |
Y | -1/3 | -1/2 | -1 | 1 | 1/2 | 1/3 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции и определите, при каких значениях c прямая y=c будет пересекать построенный график в трёх точках.
На рисунке изображены графики функций вида y=ax2+c. Установите соответствие между графиками и знаками коэффициентов a и c.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | |||
1) a>0, c<0 2) a<0, c>0 3) a>0, c>0 4) a<0, c<0 |
А) | Б) | В) | Г) |
Постройте график функции
.
Определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
Андрей и Иван соревновались в 50-метровом бассейне на дистанции 100 м. Графики их заплывов показаны на рисунке. По горизонтальной оси отложено время, а по вертикальной – расстояние пловца от старта. Кто выиграл соревнование? В ответе запишите, на сколько секунд он обогнал соперника.
Найдите p и постройте график функции y=x2+p, если известно, что прямая y=x имеет с графиком ровно одну общую точку.
Комментарии: