На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) k>0, b<0 2) k<0, b<0 3) k<0, b>0 4) k>0, b>0 |
А) ![]() |
Б) ![]() |
В) ![]() |
Если прямая слева направо возрастает, то k>0 (как на графиках А) и В)), и наоборот, если прямая слева направо убывает, то k<0 (как на графике Б).
Узнать знак коэффициента b, можно приравняв х к нулю. Получим: y=k*0+b=b.
Посмотрим на график и узнаем b больше нуля или меньше. Т.е коэффициент b - это координата "y" точки пересечения прямой и оси y. Тогда:
Для графика А): k>0, b>0 - вариант 4)
Для графика Б): k<0, b>0 - вариант 3)
Для графика В): k>0, b<0 - вариант 1)
Ответ: А) - 4), Б) - 3), В) - 1)
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции
Определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
Постройте график функции
Определите, при каких значениях m прямая y=m не имеет с графиком ни одной общей точки.
Установите соответствие между функциями и их графиками.
ФУНКЦИИ
А)
Б)
В)
ГРАФИКИ
1)
2)
3)
В таблице под каждой буквой укажите соответствующий номер.
Постройте график функции
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Постройте график функции
Определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
Комментарии: