На каком расстоянии (в метрах) от фонаря стоит человек ростом 1,8 м, если длина его тени равна 9 м, высота фонаря 5 м?
Перерисуем данный рисунок в виде треугольников и обозначим интересующие нас точки.
Рассмотрим треугольники ABC и DCE, эти треугольники
подобны, т.к. /C - общий, /B и /DEC - прямые, а углы A и EDC - равны, так как являются
соответственними.
Из подобия этих треугольников следует, что AB/DE=BC/EC,
AB/DE=(BE+EC)/EC, отсюда (AB*EC)/DE=BE+EC
BE=(AB*EC)/DE-EC
BE=(5*9)/1,8-9=16
Ответ: расстояние от фонаря до человека 16 м.
Поделитесь решением
Присоединяйтесь к нам...
Точка H является основанием высоты BH, проведенной из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите PK, если BH=16.
Точка D на стороне AB треугольника ABC выбрана так, что AD=AC. Известно, что ∠CAB=19° и ∠ACB=160°. Найдите угол DCB. Ответ дайте в градусах.
На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA=36°. Найдите угол NMB. Ответ дайте в градусах.
Найдите тангенс угла В треугольника ABC, изображённого на рисунке.
Около трапеции, один из углов которой равен 49°, описана окружность. Найдите остальные углы трапеции.
Комментарии: