На рисунке изображён график функции y=ax2+bx+c. Установите соответствие между утверждениями и промежутками, на которых эти утверждения удовлетворяются.
УТВЕРЖДЕНИЯ | ПРОМЕЖУТКИ |
А) Функция возрастает на промежутке Б) Функция убывает на промежутке |
1) [-3;3] 2) [0;3] 3) [-3;-1] 4) [-3;0] |
Функция возрастает на неком промежутке, если на этом промежутке для любых x1>x2, верно, что y(x1)>y(x2).
И наоборот, функция убывает на неком промежутке, если на этом промежутке для любых x1>x2, верно, что y(x1)<y(x2).
Данная функция возрастает на промежутке [-0,5,+∞), следовательно и на промежутке [0;3] тоже возрастает.
Функция убывает на промежутке (-∞;-0,5), следовательно и на промежутке [-3;-1] тоже убывает.
Остальные промежутки не подходят.
Ответ: А)-2), Б)-3)
Поделитесь решением
Присоединяйтесь к нам...
На рисунке изображён график квадратичной функции y=f(x).
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) Наибольшее значение функции равно 9
2) f(0)>f(1)
3) f(x)>0 при x<0
Постройте график функции
Определите, при каких значениях k прямая y=kx не имеет с графиком общих точек.
Установите соответствие между функциями и их графиками.
ФУНКЦИИ | ГРАФИКИ | |
А) y=(1/3)x+2 Б) y=-4x2+20x-22 В) y=1/x |
1) ![]() |
2) ![]() |
3) ![]() |
4) ![]() |
Известно, что графики функций y=x2+p и y=-2x-2 имеют ровно одну общую точку. Определите координаты этой точки. Постройте графики заданных функций в одной системе координат.
Установите соответствие между графиками функций и формулами, которые их задают.
ФУНКЦИИ | ГРАФИКИ | ||
1) y=-(2/x) 2) y=x2-2 3) y=2x 4) y=2/x |
А) ![]() |
Б) ![]() |
В) ![]() |
Комментарии: