На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) k<0, b>0 2) k>0, b<0 3) k>0, b>0 4) k<0, b<0 |
А) ![]() |
Б) ![]() |
В) ![]() |
Если прямая слева направо возрастает, то k>0 (как на графике В)), и наоборот, если прямая слева направо убывает, то k<0 (как на графиках А) и Б).
Узнать знак коэффициента b, можно приравняв х к нулю. Получим: y=k*0+b=b.
Посмотрим на график и узнаем b больше нуля или меньше. Т.е коэффициент b - это координата "y" точки пересечения прямой и оси y. Тогда:
Для графика А): k<0, b>0 - вариант 1)
Для графика Б): k<0, b<0 - вариант 4)
Для графика В): k>0, b>0 - вариант 3)
Ответ: А) - 1), Б) - 4), В) - 3)
Поделитесь решением
Присоединяйтесь к нам...
Известно, что число m отрицательное. На каком из рисунков точки с координатами 0, m, 2m, m2 расположены на координатной прямой в правильном порядке?
1)
2)
3)
4)
Постройте график функции и определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
Какому из следующих чисел соответствует точка, отмеченная на координатной прямой?
1) 10/23
2) 12/23
3) 13/23
4) 14/23
Укажите решение системы неравенств
x>-1
3-x>0
1)
2)
3) система не имеет решений
4)
Одно из чисел √
Какое это число?
1) √
2) √
3) √
4) √
Комментарии: