Укажите неравенство, решение которого изображено на рисунке.
1) x2-49>0
2) x2-49<0
3) x2+49<0
4) x2+49>0
Посмотрим на предложенные неравенства:
- все они квадратичные, т.е. графики этих функций - параболы
- у всех аргумент "а" равен единице, т.е. больше нуля, следовательно ветви их парабол направлены вверх
- графики парабол 1) и 2) будут совпадать, т.к. это одинаковые функции.
- графики парабол 3) и 4) будут совпадать, т.к. это одинаковые функции.
Посмотрим на рисунок решения неравенства:
- корни квадратичной функции должны быть -7 и 7.
Решим уравнение x2-49=0
x2-72=0
(x-7)(x+7)=0
x-7=0 => x1=7
x+7=0 => x2=-7
Неравенства 1) и 2), судя по корням, подходят.
Решим уравнение x2+49=0
x2=-49
Данное уравнение не имеет корней, т.к. ни какое число, возведенное в квадрат не даст отрицательный результат. Значит неравенства 3) и 4) не подходят.
Посмотрим на рисунок, в условии показан диапазон, когда график функции выше оси Х, т.е. больше нуля, следовательно, подходит неравенство x2-49>0
Ответ: 1)
Поделитесь решением
Присоединяйтесь к нам...
При каком значении р прямая y=-x+p имеет с параболой y=x2+3x ровно одну общую точку? Найдите координаты этой точки. Постройте в одной системе координат данную параболу и прямую при найденном значении p.
Одно из чисел 53/18, 55/18, 67/18, 77/18 отмечено на прямой точкой.
Какое это число?
1) 53/18
2) 55/18
3) 67/18
4) 77/18
Две прямые пересекаются в точке C (см. рис.). Найдите абсциссу точки C.
На каком рисунке изображено множество решений системы неравенств
x>3,
4-x<0?
1)
2)
3)
4)
На координатной прямой отмечены числа а и с.
Какое из следующих утверждений неверно?
1) a-c>0
2) -3<a+1<-2
3) a/c<0
4) -c>-1
Комментарии: