Постройте график функции
Определите, при каких значениях m прямая y=m не имеет с графиком общих точек.
Отметим Область допустимых Значений (ОДЗ).
На ноль делить нельзя, следовательно:
x2+2x≠0
x(x+2)≠0
Произведение равно нулю, когда один из множителей равен нулю, поэтому рассмотрим два случая:
1) x≠0
2) x+2≠0
x≠-2
Теперь упростим нашу функцию:
Получили гиперболическую функцию, значит график - гипербола.
Построим график по точкам:
X | -2 | -1 | -0,5 | 0,5 | 1 | 2 |
Y | 3,5 | 4 | 5 | 1 | 2 | 2,5 |
Поделитесь решением
Присоединяйтесь к нам...
Найдите p и постройте график функции y=x2+p, если известно, что прямая y=-2x имеет с графиком ровно одну общую точку.
На рисунке изображён график квадратичной функции y=f(x).
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) f(x)<0 при -1<x<5
2) Функция возрастает на промежутке [2; +∞)
3) Наименьшее значение функции равно -5
Постройте график функции y=x2+3x-4|x+2|+2 и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.
На рисунке изображены графики функций вида y=ax2+bx+c. Установите соответствие между графиками функций и знаками коэффициентов a и c.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) a<0, c>0 2) a>0, c>0 3) a>0, c<0 4) a<0, c<0 |
А) ![]() |
Б) ![]() |
В) ![]() |
На рисунках изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
ГРАФИКИ
А)
Б)
В)
КОЭФФИЦИЕНТЫ
1) k<0, b<0
2) k>0, b>0
3) k>0, b<0
В таблице под каждой буквой укажите соответствующий номер.
Комментарии: