Постройте график функции
Определите, при каких значениях m прямая y=m не имеет с графиком общих точек.
Отметим Область допустимых Значений (ОДЗ).
На ноль делить нельзя, следовательно:
x2+2x≠0
x(x+2)≠0
Произведение равно нулю, когда один из множителей равен нулю, поэтому рассмотрим два случая:
1) x≠0
2) x+2≠0
x≠-2
Теперь упростим нашу функцию:
Получили гиперболическую функцию, значит график - гипербола.
Построим график по точкам:
X | -2 | -1 | -0,5 | 0,5 | 1 | 2 |
Y | 3,5 | 4 | 5 | 1 | 2 | 2,5 |
Поделитесь решением
Присоединяйтесь к нам...
На рисунках изображены графики функций вида y=kx+b. Установите соответствие между знаками коэффициентов k и b и графиками функций.
КОЭФФИЦИЕНТЫ
А) k<0, b<0
Б) k<0, b>0
В) k>0, b>0
ГРАФИКИ
1)
2)
3)
В таблице под каждой буквой укажите соответствующий номер.
Найдите все значения k, при каждом из которых прямая y=kx имеет с графиком функции y=x2+4 ровно одну общую точку. Постройте этот график и все такие прямые.
На рисунке изображён график квадратичной функции y=ƒ(x).
Какие из следующих утверждений о данной функции являются верными? Запишите их номера.
1) Функция убывает на промежутке [-1;+∞)
2) ƒ(x)>0 при x<-4 и при x>2
3) Наименьшее значение функции равно -9
Андрей и Иван соревновались в 50-метровом бассейне на дистанции 100 м. Графики их заплывов показаны на рисунке. По горизонтальной оси отложено время, а по вертикальной – расстояние пловца от старта. Кто выиграл соревнование? В ответе запишите, на сколько секунд он обогнал соперника.
Найдите все значения k, при каждом из которых прямая y=kx имеет с графиком функции y=x2+6,25 ровно одну общую точку. Постройте этот график и все такие прямые.
Комментарии: