На рисунке изображены графики функций вида y=ax2+bx+c. Установите соответствие между графиками функций и знаками коэффициентов a и c.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) a<0, c>0 2) a>0, c>0 3) a>0, c<0 4) a<0, c<0 |
А) ![]() |
Б) ![]() |
В) ![]() |
Рассмотрим каждый график:
А) Ветви параболы направлены вверх, значит коэффициент а>0. Если х приравнять к нулю, то получим y=a*02+b*0+c, т.е. y=c.
На данном графике при x=0, y - отрицательный, следовательно и c<0.
Таким образом получаем, что данному графику соответствует ответ 3)
Б) Ветви параболы направлены вверх, значит a>0. При x=0, y - положительный, следовательно и c>0.
Соответствует ответу 2)
В) Ветви параболы направлены вниз, значит a<0. При x=0, y - положительный, следовательно и c>0.
Соответствует ответу 1)
Ответ: А) - 3), Б) - 2, В) - 1)
Поделитесь решением
Присоединяйтесь к нам...
Две прямые пересекаются в точке C (см. рис.). Найдите абсциссу точки C.
Постройте график функции и определите, при каких значениях m прямая y=m не имеет с графиком ни одной общей точки.
Найдите все значения k, при каждом из которых прямая y=kx имеет с графиком функции y=x2+4 ровно одну общую точку. Постройте этот график и все такие прямые.
Постройте график функции y=x2-3|x|-x и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) k<0, b<0 2) k<0, b>0 3) k>0, b>0 4) k>0, b<0 |
А) ![]() |
Б) ![]() |
В) ![]() |
Комментарии: