Выписано несколько последовательных членов геометрической прогрессии: …; 20; x; 5; -2,5; … Найдите член прогрессии, обозначенный буквой x.
В
геометрической прогрессии зависимость членов прогрессии можно записать так: bn+1=bnq
Пусть 20 - это n-ый член прогрессии, тогда:
x - (n+1)-ый член,
5 - (n+2)-ой член,
-2,5 - (n+3)-ий член.
bn+3=bn+2q
-2,5=5*q
q=-2,5/5=-1/2
По этой же формуле:
bn+1=bnq
x=20*q=20*(-1/2)=-10
Ответ: -10
Поделитесь решением
Присоединяйтесь к нам...
Выписаны первые несколько членов арифметической прогрессии: 4; 7; 10; … Найдите сумму первых шестидесяти пяти её членов.
Выписаны первые несколько членов геометрической прогрессии: -1024; -256; -64; … Найдите сумму первых пяти её членов.
Геометрическая прогрессия задана условием bn=40*(-2)n. Найдите сумму первых её 5 членов.
Дана арифметическая прогрессия (an), в которой a3=6,9, a16=26,4.
Найдите разность прогрессии.
В геометрической прогрессии сумма первого и второго членов равна 75, а сумма второго и третьего членов равна 150. Найдите первые три члена этой прогрессии.
Комментарии: