Выписаны первые несколько членов геометрической прогрессии: 17; 68; 272; ... Найдите её четвёртый член.
В
геометрической прогрессии зависимость членов прогрессии можно записать так: bn+1=bnq
Тогда:
b2=b1q
68=17q
q=4
b4=b3q=272*4=1088
Ответ: b4=1088
Поделитесь решением
Присоединяйтесь к нам...
Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 4 квадрата больше, чем в предыдущей. Сколько квадратов в 12-й строке?
Арифметическая прогрессия задана условием an=3,8-5,7n. Найдите a6.
Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 8 квадратов больше, чем в предыдущей. Сколько квадратов в 34-й строке?
Выписаны первые три члена арифметической прогрессии: 20; 17; 14. Какое число стоит в этой арифметической прогрессии на 91-м месте?
В геометрической прогрессии сумма первого и второго членов равна 50, а сумма второго и третьего членов равна 200. Найдите первые три члена этой прогрессии.
Комментарии: