ОГЭ, Математика. Числовые последовательности: Задача №F160C8 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Зная, что bn+1=1/2*bn, т.е. b7=1/2*b6, можно,конечно, вычислить все первые 7 членов последовательности, но это трудоемко. К тому же, если бы потребовалось вычислить 300-ый член, то это заняло бы очень много времени.
Есть способ проще:
В геометрической прогрессии bn=b1qn-1, нам неизвестна только q. Вычислить ее можно по формуле: bn+1/bn=q
Используя эту формулу и условие задачи, мы видим, что q=1/2. Тогда:
b7=b1(1/2)(7-1)
b7=-128*(1/2)6=-128*1/64=-2.
Ответ: b7=-2

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №5F8982

Дана арифметическая прогрессия (an), для которой a6=-7,8, a19=-10,4. Найдите разность прогрессии.



Задача №77CAEF

В геометрической прогрессии сумма первого и второго членов равна 50, а сумма второго и третьего членов равна 200. Найдите первые три члена этой прогрессии.



Задача №4CC0B6

Выписаны первые несколько членов арифметической прогрессии: 6; 8; 10; … Найдите сумму первых шестидесяти её членов.



Задача №E73061

Выписаны первые несколько членов арифметической прогрессии: 2; 6; 10; … Найдите её шестнадцатый член.



Задача №4C6ABB

Дана арифметическая прогрессия (an), разность которой равна -4,9, a1=-6,4. Найдите a15.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика