Геометрическая прогрессия задана условием bn=-104*(3)n. Найдите сумму первых её 4 членов.
Чтобы найти сумму первых 4 членов данной
геометрической прогрессии, воспользуемся
формулами.
Если решать по первой формуле, то необходимо узнать b1 - первый член прогрессии и q -
знаменатель прогрессии.
b1=-104*31=-312 (из условия задачи).
q можно найти разделив b2 на b1, для этого найдем b2:
b2=-104*32=-104*9=-936
q=b2/b1=(-936)/(-312)=3
Тогда S4=-312*(1-34)/(1-3)=-312*(1-81)/(-2)=-312*40=-12480
Ответ: -12480
Поделитесь решением
Присоединяйтесь к нам...
Арифметическая прогрессия (an) задана условиями: a1=3, an+1=an+4. Найдите a10.
В первом ряду кинозала 24 места, а в каждом следующем на 2 больше, чем в предыдущем. Сколько мест в восьмом ряду?
Последовательность задана условиями a1=5, an+1=an+3. Найдите a10.
В геометрической прогрессии сумма первого и второго членов равна 160, а сумма второго и третьего членов равна 40. Найдите первые три члена этой прогрессии.
Записаны первые три члена арифметической прогрессии: -17; -14; -11. Какое число стоит в этой арифметической прогрессии на 81-м месте?
Комментарии: