Геометрическая прогрессия задана условием bn=-104*(3)n. Найдите сумму первых её 4 членов.
Чтобы найти сумму первых 4 членов данной
геометрической прогрессии, воспользуемся
формулами.
Если решать по первой формуле, то необходимо узнать b1 - первый член прогрессии и q -
знаменатель прогрессии.
b1=-104*31=-312 (из условия задачи).
q можно найти разделив b2 на b1, для этого найдем b2:
b2=-104*32=-104*9=-936
q=b2/b1=(-936)/(-312)=3
Тогда S4=-312*(1-34)/(1-3)=-312*(1-81)/(-2)=-312*40=-12480
Ответ: -12480
Поделитесь решением
Присоединяйтесь к нам...
Дана арифметическая прогрессия (an), разность которой равна -8,1, a1=1,4. Найдите a6.
Выписано несколько последовательных членов арифметической прогрессии: 25; 19; 13; … Найдите первый отрицательный член этой прогрессии.
Выписаны первые несколько членов арифметической прогрессии: -7; -4; -1; … Найдите сумму первых десяти её членов.
Выписаны первые несколько членов арифметической прогрессии: 6; 8; 10; … Найдите сумму первых шестидесяти её членов.
Дана арифметическая прогрессия (an), для которой a6=-7,8, a19=-10,4. Найдите разность прогрессии.
Комментарии: