Дана арифметическая прогрессия (an), в которой a10=-10, a16=-19.
Найдите разность прогрессии.
Любой член
арифметической прогрессии можно записать через первый член прогрессии (a1) и разность прогрессии:
an=a1+(n-1)d
Тогда десятый член можно представить в следующем виде:
a10=a1+(10-1)d
-10=a1+9d
-10-9d=a1 (1) - это уравнение нам понадобится позже.
Шестнадцатый член можно представить так:
a16=a1+(16-1)d
-19=a1+15d
Подставляем значение a1 из уравнения (1):
-19=-10-9d+15d
-19+10=6d
-9=6d
d=-9/6=-1,5
Ответ: -1,5
Поделитесь решением
Присоединяйтесь к нам...
Геометрическая прогрессия задана условием bn=160*(3)n. Найдите сумму первых её 7 членов.
Геометрическая прогрессия задана условиями b1=, bn+1=-3bn. Найдите b7.
Выписаны первые несколько членов арифметической прогрессии: -7; -4; -1; … Найдите сумму первых десяти её членов.
В геометрической прогрессии сумма первого и второго членов равна 200, а сумма второго и третьего членов равна 50. Найдите первые три члена этой прогрессии.
Выписаны первые несколько членов геометрической прогрессии: 1512; -252; 42; … Найдите сумму первых четырёх её членов.
Комментарии: