Дана арифметическая прогрессия (an), в которой a10=-10, a16=-19.
Найдите разность прогрессии.
Любой член
арифметической прогрессии можно записать через первый член прогрессии (a1) и разность прогрессии:
an=a1+(n-1)d
Тогда десятый член можно представить в следующем виде:
a10=a1+(10-1)d
-10=a1+9d
-10-9d=a1 (1) - это уравнение нам понадобится позже.
Шестнадцатый член можно представить так:
a16=a1+(16-1)d
-19=a1+15d
Подставляем значение a1 из уравнения (1):
-19=-10-9d+15d
-19+10=6d
-9=6d
d=-9/6=-1,5
Ответ: -1,5
Поделитесь решением
Присоединяйтесь к нам...
Дана арифметическая прогрессия (an), разность которой равна 6,8, a1=-3. Найдите a14.
Арифметическая прогрессия задана условием an=-0,6+8,6n. Найдите сумму первых 10 её членов.
Выписаны первые несколько членов арифметической прогрессии: -6; -2; 2; … Найдите её шестнадцатый член.
Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 2 квадрата больше, чем в предыдущей. Сколько квадратов в 78-й строке?
Геометрическая прогрессия (bn) задана условиями: b1=-1, bn+1=2bn. Найдите b7.
Комментарии: