Решение какого из данных неравенств изображено на рисунке?
1) x2-7x<0
2) x2-49>0
3) x2-7x>0
4) x2-49<0
Посмотрим на предложенные неравенства:
- все они квадратичные, т.е. графики этих функций - параболы
- у всех аргумент "а" равен единице, т.е. больше нуля, следовательно ветви их парабол направлены вверх
- графики парабол 1) и 3) будут совпадать, т.к. это одинаковые функции.
- графики парабол 2) и 4) будут совпадать, т.к. это одинаковые функции.
Посмотрим на рисунок решения неравенства:
- корни квадратичной функции должны быть 0 и 7.
Решим уравнение x2-7x=0
x(x-7)=0
Произведение равно нулю, когда один из множителей равен нулю, поэтому:
1) x1=0
2) x-7=0 => x2=7
Посмотрим на рисунок, в условии показаны диапазоны, когда график функции выше оси Х, т.е. больше нуля, следовательно, подходит неравенство x2-7x>0
Проверим уравнение x2-49=0
x2-72=0
(x-7)(x+7)=0
Произведение равно нулю, когда один из множителей равен нулю, поэтому:
1) x-7=0 => x1=7
2) x+7=0 => x2=-7
Корни не совпали с указанными на рисунке, следовательно неравенства x2-49 не подходят.
Ответ: 3)
Поделитесь решением
Присоединяйтесь к нам...
Известно, что a и b — положительные числа и a>b. Сравните 1/a и 1/b.
Решите неравенство
Из городов А и В навстречу друг другу одновременно выехали мотоциклист и велосипедист. Мотоциклист приехал в В на 39 минут раньше, чем велосипедист приехал в А, а встретились они через 26 минут после выезда. Сколько часов затратил на путь из В в А велосипедист?
Из двух городов одновременно навстречу друг другу отправились два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 36 минут, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 82 км, скорость первого велосипедиста равна 28 км/ч, скорость второго — 10 км/ч. Определите расстояние от города, из которого выехал второй велосипедист, до места встречи.
Решите неравенство (x-1)2<√
Комментарии: