Юмор

Автор: Катя
- Вовочка, у тебя в кармане сто рублей, ты попросил у отца еще сто, сколько у тебя будет д...читать далее

ОГЭ, 9-й класс. Математика: Функции


Задача №142 из 221. Номер задачи на WWW.FIPI.RU - FC018C


Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.

Решение задачи:

Запишем Область Допустимых Значений (ОДЗ).
Так как на ноль делить нельзя, то x2-x-2≠0
Найдем такие х, для этого решим квадратное уравнение x2-x-2=0
D=(-1)2-4*1*(-2)=1+8=9
x1=(-(-1)+3)/(2*1)=4/2=2
x2=(-(-1)-3)/(2*1)=-2/2=-1
Правильно будет написать, что x≠2 и x≠-1
Упростим данную функцию, для этого разложим все 3 квадратных уравнения на множители. Каждое квадратное уравнение (если у него есть корни) можно представить в виде (x-x1)(x-x2), где x1 и x2 - корни этого уравнения.
Знаменатель мы уже сейчас можем разложить на множители:
x2-x-2=(x-2)(x-(-1))=(x-2)(x+1)
Разложим x2-3x+2
D=(-3)2-4*1*2=9-8=1
x1=(-(-3)+1)/(2*1)=4/2=2
x2=(-(-3)-1)/(2*1)=2/2=1
Получаем:
x2-3x+2=(x-2)(x-1)
Разложим x2+3x+2
D=32-4*1*2=9-8=1
x1=(-3+1)/(2*1)=-2/2=-1
x2=(-3-1)/(2*1)=-4/2=-2
x2+3x+2=(x-(-1))(x-(-2))=(x+1)(x+2)
В итоге получаем:

Построим график (красный) этой функции по точкам:

X -3 -2 -1 0 1 2
Y 4 0 -2 -2 0 4
Выкалываем точки из ОДЗ, когда x=-1 и x=2.
Зеленым цветом проведены прямые, которые имеют только одну общую точку с нашим графиком: это прямые, проходящие через выколотые точки, и прямая, касающаяся вершины параболы.
В таблице мы уже вычислили выколотые точки, поэтому m1=-2, m2=4.
Вычислим координаты вершины параболы (x0;y0).
x0 вычисляется по формуле x0=-b/(2a)=-1/(2*1)=-0,5
y0(x0)=x02+x0-2=(-0,5)2-0,5-2=0,25-2,5=-2,25 - это и есть m3
Ответ: m1=4, m2=-2, m3=-2,25

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X

Введите порядковый номер задачи для раздела 'ОГЭ, 9-й класс. Математика: Функции' (от 1 до 221)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2018. Все права защищены. Яндекс.Метрика