Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.
Запишем Область Допустимых Значений (ОДЗ).
Так как на ноль делить нельзя, то x2-x-2≠0
Найдем такие х, для этого
решим
квадратное уравнение x2-x-2=0
D=(-1)2-4*1*(-2)=1+8=9
x1=(-(-1)+3)/(2*1)=4/2=2
x2=(-(-1)-3)/(2*1)=-2/2=-1
Правильно будет написать, что x≠2 и x≠-1
Упростим данную функцию, для этого разложим все 3 квадратных уравнения на множители. Каждое квадратное уравнение (если у него есть корни) можно представить в виде (x-x1)(x-x2), где x1 и x2 - корни этого уравнения.
Знаменатель мы уже сейчас можем разложить на множители:
x2-x-2=(x-2)(x-(-1))=(x-2)(x+1)
Разложим x2-3x+2
D=(-3)2-4*1*2=9-8=1
x1=(-(-3)+1)/(2*1)=4/2=2
x2=(-(-3)-1)/(2*1)=2/2=1
Получаем:
x2-3x+2=(x-2)(x-1)
Разложим x2+3x+2
D=32-4*1*2=9-8=1
x1=(-3+1)/(2*1)=-2/2=-1
x2=(-3-1)/(2*1)=-4/2=-2
x2+3x+2=(x-(-1))(x-(-2))=(x+1)(x+2)
В итоге получаем:
Построим график (красный) этой функции по точкам:
X | -3 | -2 | -1 | 0 | 1 | 2 |
Y | 4 | 0 | -2 | -2 | 0 | 4 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Постройте график функции y=|x|(x+1)-6x.
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
На рисунке изображены графики функций вида
y=kx+b. Установите соответствие между знаками коэффициентов k и b и графиками.
КОЭФФИЦИЕНТЫ
А) k<0, b<0
Б) k>0, b>0
В) k<0, b>0
1)
2)
3)
4)
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между знаками коэффициентов k и b и графиками функций.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
А) k<0, b<0 Б) k<0, b>0 В) k>0, b<0 |
1) | 2) | |
3) | 4) |
Установите соответствие между графиками функций и формулами, которые их задают.
ФОРМУЛЫ | ГРАФИКИ | ||
1) y=2/x 2) y=x2-2 3) y=2x 4) y=2-x2 |
А) | Б) | В) |
Комментарии: