Юмор

Автор: страдалец
-Еле-еле отмыла вашу сковороду. Что там такое жирное было?
-Эээ… Тефлоновое покрытие....читать далее

ОГЭ, Математика.
Геометрия: Задача №805818

Задача №69 из 1055
Условие задачи:

Стороны AC, AB, BC треугольника ABC равны 32, 14 и 1 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если /KAC>90°.

Решение задачи:

По условию задачи /KAC>90°, т.е. это наибольший угол в треугольнике AKC следовательно, сторона KC, противолежащая этому углу тоже наибольшая (по теореме о соотношениях между сторонами и углами треугольника). Сторона AC равная 32 - наибольшая сторона исходного треугольника ABC (т.к. 32>14>1). Следовательно, угол ABC - наибольший угол треугольника ABC.
По условию задачи треугольник KAC подобен исходному треугольнику ABC. А значит углы этих треугольников соответственно равны (по определению подобных треугольников). Поэтому наибольшие углы двух рассматриваемых треугольников равны, т.е. /KAC=/ABC. /ACK не равен /ACB ( т.к. KC пересекает сторону AB в точке, отличной от B), поэтому /ACK = /BAC. Следовательно, /AKC=/ACB => cos(/AKC)=cos(/ACB).
Применяя теорему косинусов мы можем записать AB2=AC2+BC2-2*AC*BC*cos(/ACB).
(14)2=(32)2+12-2*32*1*cos(/ACB);
14=9*2+1-6*2*cos(/ACB);
14-19=-6*2*cos(/ACB);
5=6*2*cos(/ACB);
cos(/AKC)=cos(/ACB)=5/(6*2)
Ответ: cos(/AKC)=5/(6*2)

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №072CFE

На клетчатой бумаге отмечены точки A, B и C. Площадь одной клетки равна 1. Найдите расстояние от точки A до середины отрезка BC.

Задача №BA1943

Имеются два сосуда, содержащие 10 кг и 16 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 55% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 61% кислоты. Сколько килограммов кислоты содержится в первом растворе?

Задача №D3AE8B

В трапецию, сумма длин боковых сторон которой равна 16, вписана окружность. Найдите длину средней линии трапеции.

Задача №47C478

Какие из данных утверждений верны? Запишите их номера.
1) Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) У равностороннего треугольника есть центр симметрии.

Задача №34D939

Площадь равнобедренного треугольника равна 1443. Угол, лежащий напротив основания, равен 120°. Найдите длину боковой стороны.

Комментарии:


(2017-03-30 23:04:20) Администратор: БМБ, решите свою задачу по аналогии с этой.
(2017-03-29 22:10:44) БМБ: Стороны AC, AB, BCтреугольника ABC равны и 2 коня из 3 и корень из 7 1 соответственно. Точка K расположе‐ на вне треугольника ABC , причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K , A и C подобен исходному. Найдите косинус угла AKC, если ∠KAC>90° .
(2017-03-29 22:03:07) БМБ: . Стороны AC, AB, BC треугольника ABC равны ,3корня из 2 ,корень из 14 и 1 соответственно. Точка K расположе‐ на вне треугольника ABC , причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если ∠KAC>90°

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика