ОГЭ, Математика. Геометрия: Задача №0CC927 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №0CC927

Задача №70 из 1087
Условие задачи:

В параллелограмме ABCD точка E — середина стороны CD. Известно, что EA=EB. Докажите, что данный параллелограмм — прямоугольник.

Решение задачи:

Рассмотрим треугольники BCE и EDA. CE=ED, т.к. точка E - середина CD, EA=EB (из условия задачи), CB=AD (по свойству параллелограмма). Соответственно, треугольники BCE и EDA равны (по третьему признаку равенства треугольников).
Из равенства этих треугольников следует, что /BCE=/EDA.
BC||AD (по определению параллелограмма), рассмотрим сторону CD как секущую к этим параллельным сторонам. Тогда получается, что сумма углов BCE и EDA равна 180°, т.к. эти углы являются внутренними односторонними. Отсюда следует, что каждый из этих углов равен 90°.
Теперь рассмотрим стороны AB и CD, они параллельны (тоже по определению параллелограмма). Рассмотрим сторону BC как секущую к этим параллельным сторонам.
/CBA и /ECB - внутренние односторонние. Следовательно их сумма равна 180°. А так как /ECB=90°, то /CBA тоже равен 90°.
Аналогично доказывается, что /DAB тоже равен 90°.
Параллелограмм, у которого все углы прямые (т.е. 90°) называется прямоугольником (по определению).

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №FE8B32

Проектор полностью освещает экран A высотой 50 см, расположенный на расстоянии 140 см от проектора. На каком наименьшем расстоянии (в сантиметрах) от проектора нужно расположить экран B высотой 260 см, чтобы он был полностью освещён, если настройки проектора остаются неизменными?



Задача №328539

В прямоугольном треугольнике катет и гипотенуза равны 16 и 34 соответственно. Найдите другой катет этого треугольника.



Задача №02B7B4

В трапеции ABCD AD=4, BC=1, а её площадь равна 35. Найдите площадь треугольника ABC.



Задача №444748

Укажите номера верных утверждений.
1) В тупоугольном треугольнике все углы тупые.
2) В любом параллелограмме диагонали точкой пересечения делятся пополам.
3) Точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от концов этого отрезка.



Задача №E8FC9F

Найдите площадь параллелограмма, изображённого на рисунке.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика