Постройте график функции y=x2+3x-4|x+2|+2 и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.
В данной функции присутствуем модуль, следовательно функцию надо разложить на две функции, в зависимости от значения модуля:
|x+2|=x+2, при x+2≥0 (т.е. x≥-2)
|x+2|=-(x+2), при х+2<0 (т.е. х<-2)
Тогда вся функция будет выглядеть так:
x2+3x-4(x+2)+2, при x≥-2
x2+3x-4(-(x+2))+2, при x<-2
x2+3x-4x-8+2, при x≥-2
x2+3x-4(-x-2)+2, при x<-2
x2-x-6, при x≥-2
x2+3x+4x+8+2, при x<-2
x2-x-6, при x≥-2
x2+7x+10, при x<-2
График обеих подфункций - парабола, у обеих подфункций коэффициент "а" равен 1, т.е. больше нуля. Следовательно, ветви обеих парабол направлены вверх.
Построим по точкам графики обеих подфункций, но первый график на диапазоне от -2 до +∞, а второй график на диапазоне от -∞ до -2 (как указано в системе).
Подфункция y=x2-x-6 (Красный график)
X | -2 | -1 | 0 | 1 | 2 | 3 |
Y | 0 | -4 | -5 | -5 | -4 | 0 |
X | -2 | -3 | -4 | -5 | -6 |
Y | 0 | -2 | -2 | 0 | 4 |
Поделитесь решением
Присоединяйтесь к нам...
При работе фонарика батарейка постепенно разряжается и напряжение
в электрической цепи фонарика падает. На графике показана зависимость напряжения в цепи от времени работы фонарика. На горизонтальной оси отмечено время работы фонарика в часах, на вертикальной оси — напряжение в вольтах. Определите по графику, на сколько вольт упадёт напряжение за первые 6 часов работы фонарика.
Установите соответствие между графиками функций и формулами, которые их задают.
ФОРМУЛЫ | ГРАФИКИ | ||
1) y=-3 2) y=x-3 3) y=-3x 4) y=3x |
А) ![]() |
Б) ![]() |
В) ![]() |
Постройте график функции y=|x|x+|x|-6x и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Установите соответствие между графиками функций и формулами, которые их задают.
ГРАФИКИ
А)
Б)
В)
ФОРМУЛЫ
1) y=-(2/x) 2) y=x2-2
3) y=2x
В таблице под каждой буквой укажите соответствующий номер.
Постройте график функции
Определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.
Комментарии: