Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Отметим Область допустимых Значений (ОДЗ).
На ноль делить нельзя, следовательно:
x2-2x≠0
x(x-2)≠0
x≠0
x≠2
Теперь упростим нашу функцию:
Получили квадратичную функцию, значит график - парабола, коэффициент а=-1 (т.е. меньше нуля), значит ветви направлены вниз.
Построим график по точкам:
X | -2 | -1 | 0 | 1 | 2 |
Y | 1 | 4 | 5 | 4 | 1 |
Поделитесь решением
Присоединяйтесь к нам...
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между знаками коэффициентов k и b и графиками функций.
КОЭФФИЦИЕНТЫ
А) k<0, b<0 Б) k>0, b>0 В) k<0, b>0
ГРАФИКИ
1)
2)
3)
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между знаками коэффициентов k и b и графиками функций.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
А) k<0, b<0 Б) k<0, b>0 В) k>0, b<0 |
1) ![]() |
2) ![]() |
|
3) ![]() |
4) ![]() |
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Постройте график функции и определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
На рисунках изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
ГРАФИКИ
А)
Б)
В)
КОЭФФИЦИЕНТЫ
1) k<0, b>0
2) k<0, b<0
3) k>0, b>0
В таблице под каждой буквой укажите соответствующий номер.
Комментарии: