Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Отметим Область допустимых Значений (ОДЗ).
На ноль делить нельзя, следовательно:
x2-2x≠0
x(x-2)≠0
x≠0
x≠2
Теперь упростим нашу функцию:
Получили квадратичную функцию, значит график - парабола, коэффициент а=-1 (т.е. меньше нуля), значит ветви направлены вниз.
Построим график по точкам:
X | -2 | -1 | 0 | 1 | 2 |
Y | 1 | 4 | 5 | 4 | 1 |
Поделитесь решением
Присоединяйтесь к нам...
Установите соответствие между функциями и их графиками.
ФУНКЦИИ | ГРАФИКИ | |
А) y=-x2-x+5 Б) y=(-3/4)x-1 В) y=-12/x |
1) ![]() |
2) ![]() |
3) ![]() |
4) ![]() |
На рисунке изображены графики функций вида y=ax2+bx+c. Установите соответствие между графиками функций и знаками коэффициентов a и c.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) a>0, c>0 2) a>0, c<0 3) a<0, c>0 4) a<0, c<0 |
А) ![]() |
Б) ![]() |
В) ![]() |
Две прямые пересекаются в точке C (см. рис.). Найдите абсциссу точки C.
Установите соответствие между функциями и их графиками.
ФУНКЦИИ | ГРАФИКИ | |
А) y=(1/3)x+2 Б) y=-4x2+20x-22 В) y=1/x |
1) ![]() |
2) ![]() |
3) ![]() |
4) ![]() |
На рисунке изображены графики функций y=6-x2 и y=5x. Вычислите абсциссу точки B.
Комментарии: