На рисунке изображены графики функций вида y=kx+b. Установите соответствие между знаками коэффициентов k и b и графиками функций.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
А) k>0, b<0 Б) k>0, b>0 В) k<0, b>0 |
1) ![]() |
2) ![]() |
3) ![]() |
Если прямая слева направо возрастает, то k>0 (как на графиках 1) и 2)), и наоборот, если прямая слева направо убывает, то k<0 (как на графике 3).
Узнать знак коэффициента b, можно приравняв х к нулю. Получим: y=k*0+b=b.
Посмотрим на график и узнаем b больше нуля или меньше. Т.е коэффициент b - это координата "y" точки пересечения прямой и оси y. Тогда:
Для графика 1): k>0, b>0 - вариант Б)
Для графика 2): k>0, b<0 - вариант A)
Для графика 3): k<0, b>0 - вариант В)
Ответ: 1) - Б), 2) - А), 3) - В)
Поделитесь решением
Присоединяйтесь к нам...
На рисунке показано, как изменялась температура воздуха на протяжении одних суток. По горизонтали указано время суток, по вертикали — значение температуры в градусах Цельсия. Найдите разность между наибольшим и наименьшим значениями температуры во второй половине суток. Ответ дайте в градусах Цельсия.
Установите соответствие между функциями и их графиками.
ФУНКЦИИ | ГРАФИКИ | |
А) y=-2x2+2x+3 Б) y=-3/x В) y=(5/3)x-1 |
1) ![]() |
2) ![]() |
3) ![]() |
4) ![]() |
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.
Установите соответствие между графиками функций и формулами, которые их задают.
ФОРМУЛЫ | ГРАФИКИ | ||
1) y=2x+4 2) y=-2x-4 3) y=2x-4 4) y=-2x+4 |
А) ![]() |
Б) ![]() |
В) ![]() |
Постройте график функции
.
Определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
Комментарии: