На рисунке изображены графики функций вида y=kx+b. Установите соответствие между знаками коэффициентов k и b и графиками функций.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
А) k>0, b<0 Б) k>0, b>0 В) k<0, b>0 |
1) | 2) | 3) |
Если прямая слева направо возрастает, то k>0 (как на графиках 1) и 2)), и наоборот, если прямая слева направо убывает, то k<0 (как на графике 3).
Узнать знак коэффициента b, можно приравняв х к нулю. Получим: y=k*0+b=b.
Посмотрим на график и узнаем b больше нуля или меньше. Т.е коэффициент b - это координата "y" точки пересечения прямой и оси y. Тогда:
Для графика 1): k>0, b>0 - вариант Б)
Для графика 2): k>0, b<0 - вариант A)
Для графика 3): k<0, b>0 - вариант В)
Ответ: 1) - Б), 2) - А), 3) - В)
Поделитесь решением
Присоединяйтесь к нам...
Установите соответствие между функциями и их графиками.
ФУНКЦИИ
А) y=-x2+2x+5
Б) y=x2+2x-5
В) y=-x2-2x+5
ГРАФИКИ
1)
2)
3)
В таблице под каждой буквой укажите соответствующий номер.
Постройте график функции y=x2+3x-4|x+2|+2 и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.
Установите соответствие между графиками функций и формулами, которые их задают.
ФОРМУЛЫ | ГРАФИКИ | ||
1) y=x2+2 2) y=-2/x 3) y=2x 4) y=√ |
А) | Б) | В) |
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) Функция убывает на промежутке [1; +∞)
2) Наименьшее значение функции равно -4
3) ƒ(-2)<ƒ(3)
Постройте график функции Определите, при каких значениях m прямая y=m не имеет с графиком общих точек.
Комментарии: