Установите соответствие между графиками функций и формулами, которые их задают.
ФОРМУЛЫ | ГРАФИКИ | ||
1) y=2x+4 2) y=-2x-4 3) y=2x-4 4) y=-2x+4 |
А) ![]() |
Б) ![]() |
В) ![]() |
Общий вид функции прямой можно представить в виде y=kx+b.
Если прямая слева направо возрастает, то k>0 (как на графике А)), и наоборот, если прямая слева направо убывает, то k<0 (как на графиках Б) и В)).
Узнать знак коэффициента b, можно приравняв х к нулю. Получим: y=k*0+b=b. Посмотрим на график и узнаем b больше нуля или меньше. Т.е коэффициент b - это координата "y" точки пересечения прямой и оси y. Тогда:
Для графика А) k>0 и b>0. Подходит формула 1).
Для графика Б) k<0, а b>0. Соответствует функции 4).
Для графика В) k<0, а b<0. Соответствует функции 2).
Ответ: А) - 1), Б) - 4), В) - 2)
Поделитесь решением
Присоединяйтесь к нам...
На графике показано изменение температуры воздуха на протяжении трёх суток. По горизонтали указывается дата и время, по вертикали — значение температуры в градусах Цельсия. Определите по графику наименьшую температуру воздуха 19 декабря. Ответ дайте в градусах Цельсия.
Постройте график функции
x2, если |x|≤1
1/x, если |x|>1
и определите, при каких значениях c прямая y=c будет иметь с графиком единственную общую точку.
Установите соответствие между графиками функций и формулами, которые их задают.
ГРАФИКИ
А)
Б)
В)
ФОРМУЛЫ
1) y=-2x-1
2) y=-2x+1
3) y=2x+1
В таблице под каждой буквой укажите соответствующий номер.
Постройте график функции
Определите, при каких значениях m прямая y=m не имеет с графиком
ни одной общей точки.
Постройте график функции y=x2-|6x+7|.
Определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.
Комментарии: