На рисунке изображён график квадратичной функции y=ƒ(x).
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) ƒ(x)<0 при x<1
2) Наибольшее значение функции равно 3
3) ƒ(0)>ƒ(4)
Рассмотрим каждое утверждение:
1) ƒ(x)<0 при x<1, это утверждение неверно, так как, например ƒ(0)=3 (видно из графика).
2) Наибольшее значение функции равно 3. Это утверждение неверно, так как из графика видно, что ƒ(1)=4.
3) ƒ(0)>ƒ(4)
ƒ(0)=3, ƒ(4)=-5, следовательно, это утверждение верно.
Ответ: 1) и 2)
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.
Постройте график функции и определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
На рисунке изображена функция вида y=ax2+bx+c. Установите соответствие между утверждениями и промежутками, на которых эти утверждения удовлетворяются.
УТВЕРЖДЕНИЯ
А) Функция возрастает на промежутке
Б) Функция убывает на промежутке
ПРОМЕЖУТКИ
1) [0;3]
2) [-1;1]
3) [2;4]
4) [1;4]
Постройте график функции y=|x|x+3|x|-5x и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Постройте график функции y=|x|(x+1)-6x и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Комментарии: