На рисунке изображены графики функций вида y=ax2+bx+c. Установите соответствие между графиками функций и знаками коэффициентов a и c.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) a<0, c<0 2) a>0, c>0 3) a>0, c<0 4) a<0, c>0 |
А) ![]() |
Б) ![]() |
В) ![]() |
Рассмотрим каждый график:
А) Ветви параболы направлены вверх, значит коэффициент а>0. Если х приравнять к нулю, то получим y=a*02+b*0+c, т.е. y=c.
На данном графике при x=0, y - отрицательный, следовательно и c<0.
Таким образом получаем, что данному графику соответствует ответ 3)
Б) Ветви параболы направлены вниз, значит a<0. При x=0, y - положительный, следовательно и c>0.
Соответствует ответу 4)
В) Ветви параболы направлены вверх, значит a>0. При x=0, y - положительный, следовательно и c>0.
Соответствует ответу 2)
Ответ: А) - 3), Б) - 4), В) - 2)
Поделитесь решением
Присоединяйтесь к нам...
Установите соответствие между функциями и их графиками.
ФУНКЦИИ | ГРАФИКИ | |
А) y=-2x2+2x+3 Б) y=-3/x В) y=(5/3)x-1 |
1) ![]() |
2) ![]() |
3) ![]() |
4) ![]() |
Постройте график функции
Определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
На графике показано изменение температуры в процессе разогрева двигателя легкового автомобиля. На горизонтальной оси отмечено время в минутах, прошедшее с момента запуска двигателя, на вертикальной оси — температура двигателя в градусах Цельсия. Определите по графику,
через сколько минут с момента запуска двигатель нагреется до 40°C.
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b..
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) k<0, b<0 2) k>0, b<0 3) k<0, b>0 4) k>0, b>0 |
А) ![]() |
Б) ![]() |
В) ![]() |
Комментарии: