Юмор

Автор: Алла
Идет экзамен. Студент (С) понимает, что не может ответить на вопрос и мучительно рассказыв...читать далее

Решение задачи:


Область Допустимых Значений (ОДЗ).
x≠0 (так как делить на ноль нельзя).
Так как функция содержит модуль, то ее надо разложить на две подфункции:




Рассмотрим каждую функцию:

Это означает, что у=x/3,5, когда x/3,5-3,5/x≥0
Найдем этот диапазон.
x/3,5-3,5/x≥0
(x2-3,52)/(3,5x)≥0
Дробь больше нуля в двух случаях:
1) Когда и числитель и знаменатель больше нуля.
2) Когда и числитель и знаменатель меньше нуля.
Рассмотрим первый вариант:
x2-3,52≥0
3,5x>0

Чтобы решить систему неравенств нужно решить каждое неравенство по отдельности и пересечь полученные диапазоны.
x2-3,52≥0
x>0

Диапазон второго неравенства (0;+∞), а диапазон для первого неравенства найдем, решив уравнение x2-3,52=0
(x-3,5)(x+3,5)=0
x1=3,5
x2=-3,5
Коэффициент а=1, т.е. больше нуля, следовательно, ветви параболы направлены вверх. Значит диапазон для первого неравенства:
(-∞;-3,5]∪[3,5;+∞).
Пересекаем с диапазоном второго неравенства:
(-∞;-3,5]∪[3,5;+∞)∩(0;+∞)=[3,5;+∞)
Рассмотрим второй случай, когда и числитель и знаменатель меньше нуля.
x2-3,52<0
3,5x<0

x2-3,52<0
x<0
Эту систему решать не будем, а возьмем "обратные" диапазоны, т.е. для первого неравенства диапазон будет (-3,5;3,5), а для второго (-∞;0).
Пересекаем диапазоны:
(-3,5;3,5)∩(-∞;0)=(-3,5;0)
В итоге мы получили, что:
x/3,5-3,5/x≥0 на диапазонах (-3,5;0) и [3,5;+∞)
Следовательно:
x/3,5-3,5/x<0 на диапазонах (-∞;-3,5) и (0;3,5).
Построим график функции :
Выкалываем точку x=0 (из ОДЗ)
Вторая функция:

Построим график второй функции:

Объединяем графики:

Только одна общая точки будет в двух случаях, в точках "перелома" графика, они отмечены на рисунке. Это точки -3,5 и 3,5.

Подставим эти точки в функцию и получим значения m.
m1=y(-3,5)=-1
m2=y(3,5)=1
Ответ: m1=-1 и m2=1

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №33957B

Две прямые пересекаются в точке C (см. рис.). Найдите абсциссу точки C.

Задача №E8FC85

Установите соответствие между графиками функций и формулами, которые их задают.

ФОРМУЛЫ ГРАФИКИ
1) y=2/5x+2
2) y=2/5x-2
3) y=-2/5x-2
4) y=-2/5x+2
А) Б) В)

Задача №1804B7

Установите соответствие между графиками функций и формулами, которые их задают.

ФУНКЦИИ ГРАФИКИ
1) y=-(2/x)
2) y=x2-2
3) y=2x
4) y=2/x
А) Б) В)

Задача №48D82A

Установите соответствие между графиками функций и формулами, которые их задают.
ГРАФИКИ
А) Б) В)

ФОРМУЛЫ
1) y=-3x+3     2) y=3x     3) y=3x-3
В таблице под каждой буквой укажите соответствующий номер.

Задача №1804B7

Установите соответствие между графиками функций и формулами, которые их задают.

ФУНКЦИИ ГРАФИКИ
1) y=-(2/x)
2) y=x2-2
3) y=2x
4) y=2/x
А) Б) В)

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика