Постройте график функции
y=x|x|-|x|-2x.
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Данная функция содержит
модуль, следовательно ее нужно разложить на две функции:
Обе подфункции - параболы. Построим их по точкам:
y1=x2-3x на диапазоне от 0 до плюс бесконечности (красный график):
X | 0 | 1 | 2 | 3 | 4 |
Y | 0 | -2 | -3 | 0 | 4 |
X | 0 | -1 | -2 | -3 |
Y | 0 | 0 | -2 | -6 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции и определите, при каких значениях c прямая y=c будет пересекать построенный график в трёх точках.
Постройте график функции
Определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
Постройте график функции y=x+3|x|-x2 и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
На рисунке изображён график квадратичной функции y=ƒ(x).
Какие из следующих утверждений о данной функции являются верными? Запишите их номера.
1) Наибольшее значение функции равно 3
2) Функция убывает на промежутке (-∞;1]
3) ƒ(x)>0 при -1<x<3
На рисунке изображён график квадратичной функции y=f(x).
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) f(x)<0 при -1<x<5
2) Функция возрастает на промежутке [2; +∞)
3) Наименьшее значение функции равно -5
Комментарии: