Постройте график функции
y=x|x|-|x|-2x.
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Данная функция содержит
модуль, следовательно ее нужно разложить на две функции:
Обе подфункции - параболы. Построим их по точкам:
y1=x2-3x на диапазоне от 0 до плюс бесконечности (красный график):
X | 0 | 1 | 2 | 3 | 4 |
Y | 0 | -2 | -3 | 0 | 4 |
X | 0 | -1 | -2 | -3 |
Y | 0 | 0 | -2 | -6 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции y=x2-8x-4|x-3|+15 и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.
Постройте график функции
-x2, если |x|≤1
1/x, если |x|>1
и определите, при каких значениях c прямая y=c будет иметь с графиком единственную общую точку.
Постройте график функции
и определите, при каких значениях m прямая y=m имеет с графиком одну или две общие точки.
Постройте график функции
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
На рисунке изображён график квадратичной функции y=f(x).
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) Функция возрастает на промежутке (-∞;-1]
2) Наибольшее значение функции равно 8
3) f(-4)≠f(2)
Комментарии: