Установите соответствие между графиками функций и формулами, которые их задают.
ГРАФИКИ
А) | ![]() |
Б) | ![]() |
В) | ![]() |
ФОРМУЛЫ 1) y=-1/4x 2) y=4/x 3) y=-4/x 4) y=1/4x |
Рассмотрим графики. Все они являются гиперболами.
Рассмотрим функции. Они тоже все являются гиперболическими.
Для сопоставления легче всего подставить в функцию координату х, например 1:
1) y=-1/(4x)=-1/(4*1)=-1/4. Соответствует только графику В).
2) y=4/x=4/1=4. Соответствует только графику Б).
3) y=-4/x=-4/1=-4. Соответствует только графику А).
4) y=1/4x=1/(4*1)=1/4. Не соответствует ни одному графику.
Вывод однозначный.
Ответ: А)- 3), Б) - 2), В) - 1).
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции y=x2-4|x|-2x и определите, при каких значениях m прямая y=m имеет с графиком не менее одной, но не более трёх общих точек.
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) k>0, b>0 2) k<0, b>0 3) k>0, b<0 4) k<0, b<0 |
А) ![]() |
Б) ![]() |
В) ![]() |
На рисунках изображены графики функций вида y=ax2+bx+c. Установите соответствие между знаками коэффициентов a и c и графиками функций.
КОЭФФИЦИЕНТЫ
А) a>0, c<0
Б) a>0, c>0
В) a<0, c>0
ГРАФИКИ
1)
2)
3)
В таблице под каждой буквой укажите соответствующий номер.
Найдите все значения k, при каждом из которых прямая y=kx имеет с графиком функции y=x2+6,25 ровно одну общую точку. Постройте этот график и все такие прямые.
Найдите все значения k, при каждом из которых прямая y=kx имеет с графиком функции y=-x2-0,25 ровно одну общую точку. Постройте этот график и все такие прямые.
Комментарии:
(2021-01-04 13:00:06) : Как построить график функции у=6,5х-6,5х/х^2-x и определить при каких значениях к у=кх функция имеет ровно одну общую точку.