На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b..
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) k<0, b<0 2) k>0, b<0 3) k<0, b>0 4) k>0, b>0 |
А) ![]() |
Б) ![]() |
В) ![]() |
Если прямая слева направо возрастает, то k>0 (как на графике Б)), и наоборот, если прямая слева направо убывает, то k<0 (как на графиках А) и В).
Узнать знак коэффициента b, можно приравняв х к нулю. Получим: y=k*0+b=b.
Посмотрим на график и узнаем b больше нуля или меньше. Т.е коэффициент b - это координата "y" точки пересечения прямой и оси y. Тогда:
Для графика А): k<0, b>0 - вариант 3)
Для графика Б): k>0, b<0 - вариант 2)
Для графика В): k<0, b<0 - вариант 1)
Ответ: А) - 3), Б) - 2), В) - 1)
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции y=x2+11x-4|x+6|+30 и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.
Известно, что графики функций y=x2+p и y=-2x-2 имеют ровно одну общую точку. Определите координаты этой точки. Постройте графики заданных функций в одной системе координат.
Постройте график функции и определите, при каких значениях k прямая y=kx не имеет с графиком ни одной общей точки.
Постройте график функции и определите, при каких значениях c прямая y=c будет пересекать построенный график в трёх точках.
Постройте график функции y=3|x+2|-x2-3x-2 и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.
Комментарии: