Дана арифметическая прогрессия (an), для которой a6=-7,8, a19=-10,4. Найдите разность прогрессии.
Любой член
арифметической прогрессии можно записать через первый член прогрессии (a1) и разность прогрессии:
an=a1+(n-1)d
a6=a1+(6-1)d
-7,8=a1+5d
-7,8-5d=a1 (1)
a19=a1+(19-1)d
-10,4=a1+18d
Подставляем значение a1 из уравнения (1):
-10,4=-7,8-5d+18d
-10,4+7,8=13d
-2,6=13d
d=-0,2
Ответ: -0,2
Поделитесь решением
Присоединяйтесь к нам...
Выписано несколько последовательных членов геометрической прогрессии: …; 20; x; 5; -2,5; … Найдите член прогрессии, обозначенный буквой x.
Записаны первые три члена арифметической прогрессии: 30; 24; 18. Какое число стоит в этой арифметической прогрессии на 51-м месте?
Геометрическая прогрессия задана условием bn=164(1/2)n. Найдите сумму первых её 4 членов.
Выписаны первые несколько членов арифметической прогрессии: 1, 3, 5, … Найдите её одиннадцатый член.
Записаны первые три члена арифметической прогрессии: 10; 6; 2. Какое число стоит в этой арифметической прогрессии на 101-м месте?
Комментарии: