ОГЭ, Математика. Числовые последовательности: Задача №83EADF | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Числовые последовательности: Задача №83EADF

Задача №30 из 182
Условие задачи:

В геометрической прогрессии сумма первого и второго членов равна 144, а сумма второго и третьего членов равна 48. Найдите первые три члена этой прогрессии.

Решение задачи:

Каждый член геометрической прогрессии можно выразить через первый член.
bn=b1qn-1
Тогда b2=b1q2-1=b1q
По условию:
1) b1+b2=144
b1+b1q=144
b1(1+q)=144
2) b2+b3=48
b1q+b1q2=48
b1(q+q2)=48
b1(q+1)q=48
Подставляем из п. 1)
144q=48 => q=1/3, тогда b1(1+1/3)=144 => b1=144/(4/3)
b1=144*3/4=108
b2=108*1/3=108/3=36
b3=108*(1/3)2=108/32=12
Ответ: b1=108, b2=36, b3=12

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №0000DB

(bn) — геометрическая прогрессия, знаменатель прогрессии равен 1/5, b1=250. Найдите сумму первых 6 её членов.



Задача №CFC297

Дана арифметическая прогрессия: -6; -3; 0; … Найдите сумму первых сорока её членов.



Задача №492D85

Геометрическая прогрессия задана условием bn=62,5*2n. Найдите сумму первых её 4 членов.



Задача №F01DE7

В геометрической прогрессии сумма первого и второго членов равна 150, а сумма второго и третьего членов равна 75. Найдите первые три члена этой прогрессии.



Задача №560B8C

Геометрическая прогрессия (bn) задана условиями:
b1=-7, bn+1=3bn.
Найдите сумму первых пяти её членов.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика