ОГЭ, Математика. Числовые последовательности: Задача №28DFB5 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

n-ый член геометрической прогрессии равен bn=b1qn-1
Найдем знаменатель прогрессии q.
Нам известны b1, b2 и b3.
b2=b1q2-1
b2=b1q1=b1q
-100=125*q
q=-100/125=-0,8
Тогда:
b5=b1q5-1=b1q4=125*(-0,8)4=125*(-0,8)(-0,8)(-0,8)(-0,8)=-100*(-0,8)(-0,8)(-0,8)=80*(-0,8)(-0,8)=-64*(-0,8)=51,2
Ответ: 51,2

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №0000DB

(bn) — геометрическая прогрессия, знаменатель прогрессии равен 1/5, b1=250. Найдите сумму первых 6 её членов.



Задача №20376E

Дана арифметическая прогрессия (an), разность которой равна -2,5, a1=-9,1. Найдите сумму первых 15 её членов.



Задача №323FCF

Геометрическая прогрессия задана условием bn=64,5(-2)n. Найдите b6.



Задача №B43CD8

Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 2 квадрата больше, чем в предыдущей. Сколько квадратов в 117-й строке?



Задача №32A9E3

Последовательность задана формулой an=40/(n+1). Сколько членов этой последовательности больше 2?

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика