В геометрической прогрессии сумма первого и второго членов равна 120, а сумма второго и третьего членов равна 40. Найдите первые три члена этой прогрессии.
Каждый член
геометрической прогрессии можно выразить через первый член.
bn=b1qn-1
Тогда b2=b1q2-1=b1q
По условию:
1) b1+b2=120
b1+b1q=120
b1(1+q)=120
2) b2+b3=40
b1q+b1q2=40
b1(q+q2)=40
b1(q+1)q=40
Подставляем из п. 1)
120q=40 => q=1/3, тогда b1(1+1/3)=120 => b1=90
b2=90*1/3=90/3=30
b3=90*(1/3)2=90/32=10
Ответ: b1=90, b2=30, b3=10
Поделитесь решением
Присоединяйтесь к нам...
Дана арифметическая прогрессия (an), разность которой равна 0,6 и a1=6,2. Найдите сумму первых шести её членов.
Последовательность задана условиями a1=3, an+1=an-4. Найдите a10.
Дана арифметическая прогрессия (an), разность которой равна 2,5, a1=8,7. Найдите a9.
Последовательность (bn) задана условиями b1=-6, bn+1=-2*(1/bn). Найдите b5.
Геометрическая прогрессия задана условием bn=64,5(-2)n. Найдите b6.
Комментарии: