ОГЭ, Математика. Геометрия: Задача №0E7DE6 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Рассмотрим треугольник АОВ. Этот треугольник равнобедренный, т.к. ОА и ОВ - радиусы, поэтому они равны.
По свойству равнобедренного треугольника /OAB=/OBA.
Рассмотрим треугольники АОВ и COD. /DOC=/AOB, т.к. они вертикальные. СО=DO=OB=OA, т.к. это радиусы окружности.
Следовательно, треугольники АОВ и COD равны (по первому признаку). Поэтому /OBA=/OAB=/ODC=/OCD=75°
Ответ: /ODC=75°.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №273E7A

ABCDEFGHIJ — правильный десятиугольник. Найдите угол CAH. Ответ дайте в градусах.



Задача №BA9E7F

На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 2 м, а длинное плечо — 6 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 1,5 м?



Задача №81BD1E

В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 10, 9 и 6. Найдите площадь параллелограмма ABCD.



Задача №C9CB21

Сторона AC треугольника ABC проходит через центр окружности. Найдите ∠C, если ∠A=83°. Ответ дайте в градусах.



Задача №20E8E9

Основания трапеции равны 3 и 9, а высота равна 5. Найдите среднюю линию этой трапеции.

Комментарии:


(2016-04-18 13:33:01) Администратор: User, эти углы принадлежат разным секущим, поэтому они не являются внутренними накрест лежащими. К тому же, что бы говорить о накрест лежащих углах, надо доказать, что CD и AB параллельны.
(2016-04-16 09:18:47) User: Это внутренние накрест лежащие углы. ABO = ODC.

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика