Геометрическая прогрессия задана условием bn=164(1/2)n. Найдите сумму первых её 4 членов.
Чтобы найти сумму первых 4 членов данной
геометрической прогрессии, воспользуемся
формулами. В нашем случае, удобней воспользоваться первой. Для этого необходимо узнать b1 - первый член прогрессии и q -
знаменатель прогрессии.
b1=164*(1/2)1=82 (из условия задачи). А q=1/2.
Тогда S4=82*(1-(1/2)4)/(1-1/2)=82*(1-1/16)/(1/2)=82*(15/16)/(1/2)=82*15/16*2/1=82*15/8=153,75
Ответ: S4=153,75
Поделитесь решением
Присоединяйтесь к нам...
Геометрическая прогрессия задана условиями: b1=64, bn+1=(1/2)bn. Найдите b7.
Записаны первые три члена арифметической прогрессии: -9; -5; -1. Какое число стоит в этой арифметической прогрессии на 91-м месте?
Геометрическая прогрессия задана условиями b1=-1, bn+1=2bn. Найдите b7.
(bn) — геометрическая прогрессия, знаменатель прогрессии равен 1/5 , b1=375. Найдите сумму первых 5 её членов.
Выписаны первые несколько членов арифметической прогрессии: -7; -5; -3; … Найдите её шестнадцатый член.
Комментарии: