ОГЭ, Математика. Числовые последовательности: Задача №61242F | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Любой член арифметической прогрессии можно записать через первый член прогрессии (a1) и разность прогрессии: an=a1+(n-1)d
Тогда третий член можно представить в следующем виде:
a3=a1+(3-1)d
-21,4=a1+2d
-21,4-2d=a1 (1) - это уравнение нам понадобится позже.
Тринадцатый член можно представить так:
a13=a1+(13-1)d
-40,4=a1+12d
Подставляем значение a1 из уравнения (1):
-40,4=-21,4-2d+12d
-40,4+21,4=-2d+12d
-19=10d
d=-19/10=-1,9
Ответ: -1,9

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №A561B0

Геометрическая прогрессия задана условием bn=62,5*2n. Найдите сумму первых её 4 членов.



Задача №C1B02D

Выписано несколько последовательных членов геометрической прогрессии: …; 20; x; 5; -2,5; … Найдите член прогрессии, обозначенный буквой x.



Задача №4793A5

Дана арифметическая прогрессия: 6; 10; 14; … . Найдите сумму первых пятидесяти её членов.



Задача №BA0898

Геометрическая прогрессия задана условием bn=-480*(1/2)n. Найдите сумму первых её 7 членов.



Задача №9A1B96

Геометрическая прогрессия задана условием bn=160*3n. Найдите сумму первых её 4 членов.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика