Юмор

Автор: Катя
- Вовочка, у тебя в кармане сто рублей, ты попросил у отца еще сто, сколько у тебя будет д...читать далее

Геометрическая прогрессия задана условием bn=164(1/2)n. Найдите сумму первых её 4 членов.

Решение задачи:

Вариант №1
Чтобы найти сумму первых 4 членов данной геометрической прогрессии, воспользуемся формулами. В нашем случае, удобней воспользоваться первой. Для этого необходимо узнать b1 - первый член прогрессии и q - знаменатель прогрессии.
b1=164*(1/2)1=82 (из условия задачи). А q=1/2.
Тогда:



Ответ: S4=153,75


Вариант №2
В данной задаче надо найти сумму всего четырех первых членов. Поэтому можно просто вычислить значения каждого члена и сложить их:
b1=164(1/2)1=164/2=82
b2=164(1/2)2=164/4=41
b3=164(1/2)3=164/8=20,5
b4=164(1/2)4=164/16=10,25
S4=82+41+20,5+10,25=153,75
Ответ: 153,75

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X

Введите порядковый номер задачи для раздела 'ОГЭ, 9-й класс. Математика: Числовые последовательности' (от 1 до 169)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2018. Все права защищены. Яндекс.Метрика