На рисунках изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
ГРАФИКИ
А)
Б)
В)
КОЭФФИЦИЕНТЫ
1) k<0, b<0
2) k>0, b>0
3) k>0, b<0
В таблице под каждой буквой укажите соответствующий номер.
Если прямая слева направо возрастает, то k>0 (как на графиках А) и Б)), и наоборот, если прямая слева направо убывает, то k<0 (как на графике В)).
Узнать знак коэффициента b, можно приравняв х к нулю. Получим: y=k*0+b=b.
Посмотрим на график и узнаем b больше нуля или меньше. Т.е если прямая пересекает ось Y ниже оси X, то b - отрицательная, если выше - положительная. Тогда:
Для графика А): k>0, b>0 - вариант 2)
Для графика Б): k>0, b<0 - вариант 3)
Для графика С): k<0, b<0 - вариант 1)
ГРАФИКИ | А) | Б) | В) |
КОЭФФИЦИЕНТЫ | 2) | 3) | 1) |
Поделитесь решением
Присоединяйтесь к нам...
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между знаками коэффициентов k и b и графиками функций.
КОЭФФИЦИЕНТЫ
А) k<0, b>0
Б) k<0, b<0
В) k>0, b<0
ГРАФИКИ
1)
2)
3)
Одно из чисел √40, √46, √53, √58 отмечено на прямой точкой A.
Какое это число?
1) √40
2) √46
3) √53
4) √58
На каком из рисунков изображено решение неравенства 8x-x2≥0?
1)
2)
3)
4)
Постройте график функции и определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
На каком рисунке изображено множество решений системы неравенств
x>3,
4-x<0?
1)
2)
3)
4)
Комментарии: