Установите соответствие между графиками функций и формулами, которые их задают.
ФОРМУЛЫ | ГРАФИКИ | ||
1) y=-x/2-1 2) y=-x/2+1 3) y=x/2+1 |
А) ![]() |
Б) ![]() |
В) ![]() |
Общий вид функции прямой можно представить в виде y=kx+b.
Если прямая слева направо возрастает, то k>0 (как на графике Б)), и наоборот, если прямая слева направо убывает, то k<0 (как на графиках А) и В)).
Узнать знак коэффициента b, можно приравняв х к нулю. Получим: y=k*0+b=b. Посмотрим на график и узнаем b больше нуля или меньше. Т.е коэффициент b - это координата "y" точки пересечения прямой и оси y. Тогда:
Для графика А) k<0 и b>0. Подходит формула 2).
Для графика Б) k>0, а b>0. Соответствует функции 3).
Для графика В) k<0, а b<0. Соответствует функции 1).
Ответ: А) - 2), Б) - 3), В) - 1)
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции y=2x+6|x|-x2 и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
На рисунке изображена функция вида y=ax2+bx+c. Установите соответствие между утверждениями и промежутками, на которых эти утверждения удовлетворяются.
УТВЕРЖДЕНИЯ
А) Функция возрастает на промежутке
Б) Функция убывает на промежутке
ПРОМЕЖУТКИ
1) [0;3]
2) [-1;1]
3) [2;4]
4) [1;4]
На рисунках изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
ГРАФИКИ
А)
Б)
В)
КОЭФФИЦИЕНТЫ
1) k<0, b>0
2) k<0, b<0
3) k>0, b>0
В таблице под каждой буквой укажите соответствующий номер.
Постройте график функции y=-x+5|x|-x2 и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
Постройте график функции
x2, если |x|≤1
1/x, если |x|>1
и определите, при каких значениях c прямая y=c будет иметь с графиком единственную общую точку.
Комментарии: