Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.
2) Диагональ трапеции делит её на два равных треугольника.
3) Квадрат диагонали прямоугольника равен сумме квадратов двух его смежных сторон.
Рассмотрим каждое утверждение:
1) "Если при пересечении двух прямых третьей прямой
накрест лежащие углы равны, то прямые параллельны." Это утверждение верно,
по
свойству параллельных прямых.
2) "Диагональ
трапеции делит её на два равных треугольника." Во-первых, нет такого
свойства трапеции. Во-вторых, если рассмотреть
прямоугольную трапецию с
проведенной диагональю, то становится очевидным, что один из получившихся треугольников -
прямоугольный, а второй - нет.
Следовательно, это утверждение неверно.
3) "Квадрат диагонали прямоугольника равен сумме квадратов двух его смежных сторон", это утверждение верно
(по теореме Пифагора).
Поделитесь решением
Присоединяйтесь к нам...
Четырёхугольник ABCD вписан в окружность. Прямые AB и CD пересекаются в точке K, BK=8, DK=12, BC=6. Найдите AD.
В треугольнике ABC угол C равен 90°, AC=6, tgA=2√
Точки M и N являются серединами сторон AB и BC треугольника ABC, AC=42. Найдите MN.
Найдите тангенс угла В треугольника ABC, изображённого на рисунке.
Основания трапеции равны 8 и 18. Найдите больший из отрезков, на которые делит среднюю линию этой трапеции одна из её диагоналей.
Комментарии:
(2014-05-29 16:59:15) Администратор: Маша, тогда подскажите, что такое диагональ прямоугольного треугольника? )))
(2014-05-29 16:54:50) Маша: в 3 не прямоугольник должен быть написан,а прямоугольный треугольник