Вода в сосуде цилиндрической формы находится на уровне h= 80 см. На каком уровне окажется вода, если её перелить в другой цилиндрический сосуд, у которого радиус основания вдвое больше, чем у первого? Ответ дайте в сантиметрах.
При переливании воды из одного сосуда в другой, объем воды, естественно, не меняется.
Пусть r - радиус основания первого сосуда.
Тогда площадь основания:
S=πr2
Объем воды:
V=S*h=πr2h
Площадь основания второго сосуда:
S2=πR2=π(2r)2=4πr2 (R - радиус второго сосуда = 2r, по условию)
Объем воды:
V2=S2*h2=4πr2h2
Как мы уже сказали ранее объем воды не меняется, т.е. V=V2, получаем:
πr2h=4πr2h2 |:πr2
h=4h2
80=4h2
h2=80/4=20
Ответ: 20
Поделитесь решением
Присоединяйтесь к нам...
Участок земли имеет прямоугольную форму. Стороны прямоугольника равны 25 м и 65 м. Найдите длину забора (в метрах), которым нужно огородить участок, предусмотрев проезд шириной 4 м.
В бак, имеющий форму прямой призмы, налито 5 л воды. После полного погружения в воду детали уровень воды в баке поднялся в 1,4 раза. Найдите объём детали. Ответ дайте в кубических сантиметрах, зная, что в одном литре 1000 кубических сантиметров.
На каком расстоянии (в метрах) от фонаря стоит человек ростом 2 м, если длина его тени равна 1 м, высота фонаря 9 м?
В трапеции ABCD известно, что AD=8, BC=7, а её площадь равна 45. Найдите площадь треугольника ABC.
В равнобедренном треугольнике ABC медиана BM, проведённая к основанию, равна 12, а tgA=12/5. Найдите длину боковой стороны треугольника ABC.
Комментарии: