ОГЭ, Математика. Числовые последовательности: Задача №CA92AF | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Чтобы найти сумму первых 7 членов данной геометрической прогрессии, воспользуемся формулами. В нашем случае, удобней воспользоваться первой. Для этого необходимо узнать b1 - первый член прогрессии и q - знаменатель прогрессии.
b1=160*31=480 (из условия задачи). А q=3.
Тогда S7=480*(1-37)/(1-3)=480*(1-2187)/(-2)=480*(-2186)/(-2)=524640
Ответ: S7=524640

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №CFC297

Дана арифметическая прогрессия: -6; -3; 0; … Найдите сумму первых сорока её членов.



Задача №FA5E5A

Последовательность (cn) задана условиями:
c1=5, cn+1=cn-4.
Найдите c6.



Задача №E53FE9

Выписаны первые несколько членов геометрической прогрессии: 1512; -252; 42; … Найдите сумму первых четырёх её членов.



Задача №04E7C1

В геометрической прогрессии сумма первого и второго членов равна 75, а сумма второго и третьего членов равна 150. Найдите первые три члена этой прогрессии.



Задача №7FADDE

Дана арифметическая прогрессия: -7; -4; -1; … . Найдите сумму первых шестидесяти её членов.

Комментарии:


(2016-02-28 15:01:10) Администратор: Фарит, я не могу посмотреть файл на вашем компьютере, поэтому я не вижу формулу...
(2016-02-28 11:59:35) фарит: почему мы не пользовались той формулой которую дают перед экзаменом? file:///C:/Users/User/YandexDisk-schackurov.farit/Скриншоты/2016-02-28%2011-56-59%20Скриншот%20экрана.png

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Геометрическая прогрессия — последовательность чисел b1, b2, b3,...(членов прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число q (знаменатель прогрессии), где b1≠0, q≠0: b1, b2=b1q, b3=b2q,...,bn=bn-1q
Любой член геометрической прогрессии может быть вычислен по формуле: bn=b1qn-1
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика