Арифметическая прогрессия (an) задана условиями a1=48, an+1=an-17. Найдите сумму первых 17 её членов.
В данной
арифметической прогрессии каждый последующий член меньше предыдущего на 17, следовательно d=-17
Вычислим сумму первых 17-и членов:
S17=(2a1+(n-1)d)n/2=(2*48+(17-1)(-17))*17/2=(96+16(-17))*17/2=-176*17/2=-88*17=-1496
Ответ: S17=-1496
Поделитесь решением
Присоединяйтесь к нам...
Записаны первые три члена арифметической прогрессии: 10; 6; 2. Какое число стоит в этой арифметической прогрессии на 101-м месте?
Геометрическая прогрессия задана условиями b1=-6, bn+1=2bn. Найдите b6.
Дана геометрическая прогрессия (bn), знаменатель которой равен 1/2, b1=2. Найдите сумму первых 4 её членов.
Геометрическая прогрессия задана условиями b1=-7, bn+1=3bn. Найдите сумму первых 5 её членов.
Выписано несколько последовательных членов арифметической прогрессии: 25; 19; 13; … Найдите первый отрицательный член этой прогрессии.
Комментарии: