Арифметическая прогрессия (an) задана условиями a1=48, an+1=an-17. Найдите сумму первых 17 её членов.
В данной
арифметической прогрессии каждый последующий член меньше предыдущего на 17, следовательно d=-17
Вычислим сумму первых 17-и членов:
S17=(2a1+(n-1)d)n/2=(2*48+(17-1)(-17))*17/2=(96+16(-17))*17/2=-176*17/2=-88*17=-1496
Ответ: S17=-1496
Поделитесь решением
Присоединяйтесь к нам...
Последовательность задана условиями b1=-7, bn+1=-1/bn. Найдите b3.
Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 6 квадратов больше, чем в предыдущей. Сколько квадратов в 53-й строке?
Дана арифметическая прогрессия: 1; 3; 5; … . Найдите сумму первых семидесяти её членов.
Последовательность (bn) задана условиями: b1=4,
Найдите b3.
Дана арифметическая прогрессия (an), разность которой равна -2,5, a1=-9,1. Найдите сумму первых 15 её членов.
Комментарии: