Задача №18 из 42 |
Найдите корень уравнения log3(2x-5)=2.
log3(2x-5)=2
Так как 1=log33 (по
второму свойству логарифмов), то уравнение можно записать в виде:
log3(2x-5)=2log33
log3(2x-5)=log3(32) (по
шестому свойству).
log3(2x-5)=log39.
Применяем потенцирование:
2x-5=9
2x=14
x=7
Ответ: 7
Поделитесь решением
Присоединяйтесь к нам...
Решите уравнение x2=-2x+24.
Если уравнение имеет более одного корня, в ответе укажите больший из них.
Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.
НЕРАВЕНСТВА | РЕШЕНИЯ |
А) ![]() |
1) ![]() |
Б) ![]() |
2) ![]() |
В) (x-3)(x-5)>0 |
3) ![]() |
Г) log2(x-3)<1 |
4) ![]() |
Каждому из четырёх неравенств в левом столбце соответствует одно
из решений в правом столбце. Установите соответствие между неравенствами и их решениями.
НЕРАВЕНСТВА | РЕШЕНИЯ |
A) 2-x+1<0,5 | 1) (4;+∞) |
Б) (x-5)2/(x-4)<0 | 2) (2;4) |
В) log4x>1 | 3) (2;+∞) |
Г) (x-4)(x-2)<0 | 4) (-∞;4) |
Хозяин договорился с рабочими, что они выкопают ему колодец на следующих условиях: за первый метр он заплатит им 4200 рублей, а за каждый следующий метр — на 1300 рублей больше, чем за предыдущий. Сколько рублей хозяин должен будет заплатить рабочим, если они выкопают колодец глубиной 11 метров?
На координатной прямой отмечено число m и точки A, B, C и D.
Каждой точке соответствует одно из чисел в правом столбце. Установите соответствие между указанными точками и числами.
ТОЧКИ | ЧИСЛА |
A | 1) √ |
B | 2) m2 |
C | 3) m-1 |
D | 4) -3/m |
Комментарии: