Задача №18 из 42 |
Найдите корень уравнения log3(2x-5)=2.
log3(2x-5)=2
Так как 1=log33 (по
второму свойству логарифмов), то уравнение можно записать в виде:
log3(2x-5)=2log33
log3(2x-5)=log3(32) (по
шестому свойству).
log3(2x-5)=log39.
Применяем потенцирование:
2x-5=9
2x=14
x=7
Ответ: 7
Поделитесь решением
Присоединяйтесь к нам...
Кузнечик прыгает вдоль координатной прямой в любом направлении на единичный отрезок за прыжок, делая первый прыжок из начала координат. Сколько существует различных точек на координатной прямой, в которых кузнечик может оказаться, совершив ровно 8 прыжков?
На координатной прямой отмечены точки A, B, C и D.

Каждой точке соответствует одно из чисел в правом столбце. Установите соответствие между указанными точками и числами.
| ТОЧКИ | ЧИСЛА |
| A | 1) √11+√3 |
| B | 2) √11*√3 |
| C | 3) √11-√3 |
| D | 4) (√3)3-2 |
В корзине лежит 40 грибов: рыжики и грузди. Известно, что среди любых 17 грибов имеется хотя бы один рыжик, а среди любых 25 грибов хотя бы один груздь. Сколько рыжиков в корзине?
Найдите корень уравнения 
Найдите корень уравнения -5+2x=-3x+6.
Комментарии: