Юмор

Автор: Катя
- Вовочка, у тебя в кармане сто рублей, ты попросил у отца еще сто, сколько у тебя будет д...читать далее

ОГЭ, 9-й класс. Математика: Алгебраические выражения


Задача №18 из 295. Номер задачи на WWW.FIPI.RU - 02564E


Постройте график функции y=x2+3x-4|x+2|+2 и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.

Решение задачи:

В данной функции присутствуем модуль, следовательно функцию надо разложить на две функции, в зависимости от значения модуля:
|x+2|=x+2, при x+2≥0 (т.е. x≥-2)
|x+2|=-(x+2), при х+2<0 (т.е. х<-2)
Тогда вся функция будет выглядеть так:
x2+3x-4(x+2)+2, при x≥-2
x2+3x-4(-(x+2))+2, при x<-2
x2+3x-4x-8+2, при x≥-2
x2+3x-4(-x-2)+2, при x<-2
x2-x-6, при x≥-2
x2+3x+4x+8+2, при x<-2
x2-x-6, при x≥-2
x2+7x+10, при x<-2

График первой функции:
y=x2-x-6, при x≥-2
График второй функции:
y=x2+7x+10, при x<-2
Итоговый график функции y=x2+3x-4|x+2|+2
Очевидно, что при m=0, функция y=m имеет ровно 3 общие точки с графиком.
Но существует еще одно значение m, как показано на рисунке. Данная прямая проходит через вершину второй функции.
Координату x0 вершины параболы можно найти по формуле:
x0=-b/2a
x0=-7/(2*1)=-3,5
Подставим в уравнение и получим, что y0=(-3,5)2+7*(-3,5)+10=12,25-24,5+10=-2,25
Ответ: при значениях m=0 и m=-2,25 прямая y=m имеет с графиком ровно три общие точки.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X

Введите порядковый номер задачи для раздела 'ОГЭ, 9-й класс. Математика: Алгебраические выражения' (от 1 до 295)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2018. Все права защищены. Яндекс.Метрика