ЕГЭ, Математика (базовый уровень). Уравнения и неравенства: Задача №2EFD48 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ЕГЭ, Математика (базовый уровень).
Уравнения и неравенства: Задача №2EFD48

Задача №9 из 42
Условие задачи:

Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.

НЕРАВЕНСТВА РЕШЕНИЯ
A) 2-x+1<0,5 1) (4;+∞)
Б) (x-5)2/(x-4)<0 2) (2;4)
В) log4x>1 3) (2;+∞)
Г) (x-4)(x-2)<0 4) (-∞;4)
Впишите в приведённую в ответе таблицу под каждой буквой соответствующий решению номер.

Решение задачи:

Рассмотрим каждое неравенство:
A) 2-x+1<0,5
Это неравенство содержит показательную функцию.
2-x+1<1/2
2-x+1<2-1
Так как основание равно 2, т.е. больше 1, то:
-x+1<-1 (по теореме).
-x<-2, умножим неравенство на -1, не забудем, что знак меняется на противоположный.
x>2, подходит вариант 3) (2;+∞).
Б) (x-5)2/(x-4)<0
ОДЗ: x-4≠0 => x≠4
Эта дробь будет меньше нуля, когда знаменатель меньше нуля, так как числитель всегда положительный (квадрат любого числа всегда больше и равен нулю).
x-4<0
x<4, подходит вариант 4) (-∞;4).
В) log4x>1, приведем единицу к логарифмическому виду по основанию 4.
log4x> log44 (по второму свойству логарифма)
Так как основание равно 4, т.е. больше 1, то:
x>4 (по теореме)
Подходит вариант 1) (4;+∞)
Г) (x-4)(x-2)<0
Корни квадратной функции (x-4)(x-2):
x1=4
x2=2
Преобразуем функцию:
(x-4)(x-2)=x2-2x-4x+8=x2-6x+8
Коэффициен "а" этой функции равен 1, т.е. больше 0, следовательно ветви параболы направлены вверх.
Функция буден меньше нуля на диапазоне, когда график лежит ниже оси Х, т.е. на диапазоне от 2 до 4. Подходит вариант 2) (2;4)
Ответ:

A Б В Г
3 4 1 2

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №0FBDFF

Некоторые учащиеся 11-х классов школы ходили в октябре на спектакль «Вишнёвый сад». В декабре некоторые одиннадцатиклассники пойдут на постановку по пьесе «Три сестры», причём среди них не будет тех, кто ходил в октябре на спектакль «Вишнёвый сад».
Выберите утверждения, которые будут верны при указанных условиях независимо от того, кто из одиннадцатиклассников пойдёт на постановку по пьесе «Три сестры».
1) Нет ни одного одиннадцатиклассника, который ходил на спектакль «Вишнёвый сад» и пойдёт на постановку по пьесе «Три сестры».
2) Каждый учащийся 11-х классов, который не был на спектакле «Вишнёвый сад», пойдёт на постановку по пьесе «Три сестры».
3) Среди учащихся 11-х классов этой школы, которые не пойдут на постановку по пьесе «Три сестры», есть хотя бы один, который ходил на спектакль «Вишнёвый сад».
4) Найдётся одиннадцатиклассник, который не ходил на спектакль «Вишнёвый сад» и не пойдёт на постановку по пьесе «Три сестры».
В ответе запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.



Задача №2BCD7F

Найдите корень уравнения



Задача №27524E

Когда какая-нибудь кошка идёт по забору, пёс Шарик, живущий в будке возле дома, обязательно лает. Выберите утверждения, которые верны при приведённом условии.
1) Если Шарик не лает, значит, по забору идёт кошка.
2) Если Шарик молчит, значит, кошка по забору не идёт.
3) Если по забору идёт чёрная кошка, Шарик не лает.
4) Если по забору пойдёт белая кошка, Шарик будет лаять. В ответе запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.



Задача №27524E

Когда какая-нибудь кошка идёт по забору, пёс Шарик, живущий в будке возле дома, обязательно лает. Выберите утверждения, которые верны при приведённом условии.
1) Если Шарик не лает, значит, по забору идёт кошка.
2) Если Шарик молчит, значит, кошка по забору не идёт.
3) Если по забору идёт чёрная кошка, Шарик не лает.
4) Если по забору пойдёт белая кошка, Шарик будет лаять. В ответе запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.



Задача №90C341

Найдите корень уравнения 2x-11=3.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема для решения логарифмических неравенств.
Если основание логарифма больше единицы (a>1), то при переходе от логарифмов к выражениям, стоящим под знаком логарифма, знак неравенства сохраняется, и неравенство
logaf(x)>logag(x)
равносильно системе:

Если основание логарифма больше нуля и меньше единицы (0<a<1), то при переходе от логарифмов к выражениям, стоящим под знаком логарифма, знак неравенства меняется на противоположный, и неравенство
logaf(x)>logag(x)
равносильно системе:

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика