На рисунке изображены графики функций вида y=kx+b. Установите соответствие между знаками коэффициентов k и b и графиками функций.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
А) k<0, b<0 Б) k<0, b>0 В) k>0, b<0 |
1) ![]() |
2) ![]() |
|
3) ![]() |
4) ![]() |
Если прямая слева направо возрастает, то k>0 (как на графиках 3) и 4)), и наоборот, если прямая слева направо убывает, то k<0 (как на графиках 1) и 2)).
Узнать знак коэффициента b, можно приравняв х к нулю. Получим: y=k*0+b=b. Посмотрим на график и узнаем b больше нуля или меньше. Т.е коэффициент b - это координата "y" точки пересечения прямой и оси y. Тогда:
Для первого графика: k<0, b>0 - вариант Б)
Для второго графика: k<0, b<0 - вариант A)
Для третьего графика: k>0, b<0 - вариант В)
Для четвертого графика: k>0, b>0 - вариант отсутствует
Ответ: А) - 2), Б) - 1), В) - 3)
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции и определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
На координатной прямой отмечены точки A, B, C, D. Одна из них соответствует числу √
1) точка A
2) точка B
3) точка C
4) точка D
Укажите решение системы неравенств
1)
2)
3) нет решений
4)
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) k<0, b>0 2) k>0, b<0 3) k>0, b>0 4) k<0, b<0 |
А) ![]() |
Б) ![]() |
В) ![]() |
Укажите решение неравенства
25x2>49.
1)
2)
3)
4)
Комментарии: