Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.
Запишем Область Допустимых Значений (ОДЗ).
Так как на ноль делить нельзя, то x2-x-2≠0
Найдем такие х, для этого
решим
квадратное уравнение x2-x-2=0
D=(-1)2-4*1*(-2)=1+8=9
x1=(-(-1)+3)/(2*1)=4/2=2
x2=(-(-1)-3)/(2*1)=-2/2=-1
Правильно будет написать, что x≠2 и x≠-1
Упростим данную функцию, для этого разложим все 3 квадратных уравнения на множители. Каждое квадратное уравнение (если у него есть корни) можно представить в виде (x-x1)(x-x2), где x1 и x2 - корни этого уравнения.
Знаменатель мы уже сейчас можем разложить на множители:
x2-x-2=(x-2)(x-(-1))=(x-2)(x+1)
Разложим x2-3x+2
D=(-3)2-4*1*2=9-8=1
x1=(-(-3)+1)/(2*1)=4/2=2
x2=(-(-3)-1)/(2*1)=2/2=1
Получаем:
x2-3x+2=(x-2)(x-1)
Разложим x2+3x+2
D=32-4*1*2=9-8=1
x1=(-3+1)/(2*1)=-2/2=-1
x2=(-3-1)/(2*1)=-4/2=-2
x2+3x+2=(x-(-1))(x-(-2))=(x+1)(x+2)
В итоге получаем:
Построим график (красный) этой функции по точкам:
X | -3 | -2 | -1 | 0 | 1 | 2 |
Y | 4 | 0 | -2 | -2 | 0 | 4 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции y=x2-5|x|-x и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
Установите соответствие между графиками функций и формулами, которые их задают.
ГРАФИКИ
A)
Б)
В)
ФОРМУЛЫ
1) y=12/x
2) y=-12/x
3) y=1/(12x)
В таблице под каждой буквой укажите соответствующий номер.
Постройте график функции:
и определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.
Постройте график функции y=x2+3x-4|x+2|+2 и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.
Комментарии: