Юмор

Автор: Катя
- Вовочка, у тебя в кармане сто рублей, ты попросил у отца еще сто, сколько у тебя будет д...читать далее

ОГЭ, 9-й класс. Математика: Функции


Задача №189 из 221. Номер задачи на WWW.FIPI.RU - E1517C


Постройте график функции y=x2-5|x|-x и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.

Решение задачи:

В данной функции присутствуем модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения модуля:
x2-5x-x, при x≥0
x2-5(-x)-x, при x<0
x2-6x, при x≥0
x2+4x, при x<0
Рассмотрим и построим график для каждой подфункции и объединим их.
1) y1=x2-6x, при x≥0 (красный график)

X 0 2 4 6
Y 0 -8 -8 0
2) y2=x2+4x, при x<0 (синий график)
X 0 -1 -2 -3 -4
Y 0 -3 -4 -3 0
y=c имеет с графиком ровно три общие точки в двух случаях, как показано на рисунке (зеленые прямые).
Очевидно, что с1=0.
Чтобы найти с2 надо определить координаты вершины синей параболы.
x0=-b/2a=-4/(2*1)=-2
y0(-2)=(-2)2+4*(-2)=4-8=-4
c2=-4
Ответ: с1=0, c2=-4

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X

Введите порядковый номер задачи для раздела 'ОГЭ, 9-й класс. Математика: Функции' (от 1 до 221)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2018. Все права защищены. Яндекс.Метрика