ОГЭ, Математика. Функции: Задача №1BB897 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Функции: Задача №1BB897

Задача №10 из 287
Условие задачи:

Найдите все значения k, при каждом из которых прямая y=kx имеет с графиком функции y=-x2-0,25 ровно одну общую точку. Постройте этот график и все такие прямые.

Решение задачи:

Две функции имеют точку пересечения, это означает, что графики обеих функций имеют общую точку. Следовательно, надо составить систему и решить ее:
y=-x2-0,25
y=kx
kx=-x2-0,25
x2+kx+0,25=0
Найдем корни этого уравнения:
D=k2-4*1*0,25=k2-1
В условии сказано, что точка пересечения только одна, следовательно корень уравнения должен быть только один. Это условие выполняется, когда дискриминант равен нулю:
D=k2-1=0
k2=1
k1=1
k2=-1
Получаем функции:
y=-x2-0,25
y=x
y=-x
построим графики:

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №7573C3

Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.



Задача №196650

На рисунке изображён график изменения атмосферного давления в городе Энске за три дня. По горизонтали указаны дни недели, по вертикали — значения атмосферного давления в миллиметрах ртутного столба. Укажите наибольшее значение атмосферного давления в среду (мм рт. ст.).



Задача №5D770D

Постройте график функции y=x2-4|x|-2x и определите, при каких значениях m прямая y=m имеет с графиком не менее одной, но не более трёх общих точек.



Задача №019961

Установите соответствие между функциями и их графиками.

ФУНКЦИИ ГРАФИКИ
А) y=(1/3)x+2
Б) y=-4x2+20x-22
В) y=1/x
1) 2)
3) 4)



Задача №959A12

Найдите все значения k, при каждом из которых прямая y=kx имеет с графиком функции y=-x2-6,25 ровно одну общую точку. Постройте этот график и все такие прямые.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Решение квадратного уравнения с помощью дискриминанта:
Для нахождения корней квадратного уравнения ax2+bx+c=0 в общем случае следует пользоваться приводимым ниже алгоритмом:
1) Вычислить значение дискриминанта квадратного уравнения:
D=b2-4ac
2) Вычислить корни уравнения:
x1,2=(-b±D)/(2a)
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика