Найдите все значения k, при каждом из которых прямая y=kx имеет с графиком функции y=-x2-6,25 ровно одну общую точку. Постройте этот график и все такие прямые.
Две функции имеют точку пересечения, это означает, что графики обеих функций имеют общую точку. Следовательно, надо составить систему и решить ее:
y=-x2-6,25
y=kx
kx=-x2-6,25
x2+kx+6,25=0
Найдем корни этого
уравнения:
D=k2-4*1*6,25=k2-25
В условии сказано, что точка пересечения только одна, следовательно корень уравнения должен быть только один. Это условие выполняется, когда дискриминант равен нулю:
D=k2-25=0
k2=25
k1=5
k2=-5
Получаем функции:
y=-x2-6,25
y=5x
y=-5x
построим графики по точкам:
y=-x2-6,25 (красный)
X | -2 | -1 | 0 | 1 | 2 |
Y | -10,25 | -7,25 | -6,25 | -7,25 | -10,25 |
X | -1 | 0 | 1 |
Y | -5 | 0 | 5 |
X | -1 | 0 | 1 |
Y | 5 | 0 | -5 |
Поделитесь решением
Присоединяйтесь к нам...
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) Функция убывает на промежутке [1; +∞)
2) Наименьшее значение функции равно -4
3) ƒ(-2)<ƒ(3)
Постройте график функции y=x2-5|x|-x и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
Постройте график функции
x2, если |x|≤1
1/x, если |x|>1
и определите, при каких значениях c прямая y=c будет иметь с графиком единственную общую точку.
Постройте график функции
x2-10x+25, если x≥4,
x-3, если x<4,
и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Постройте график функции y=|x|(x-1)-3x и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Комментарии: